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In this blog post, I discuss the engineering decisions that I made while building nestris.online, an

online platform for Classic Tetris players to compete against each other. I worked on this project

during the summer after my freshman year, so some of the code could be better written, but the

ideas remain the same.

Background

Of the many iterations of Tetris that have been released over the past few decades, one of

the most popular is the 1989 version, widely known as Classic Tetris, created for the

Nintendo Entertainment System (NES) (Figure 1). Over the past few years, the game has

surged in popularity due to its extremely addicting gameplay, its seemingly infinite creative

possibilities, and internet memes. If you aren’t familiar with the game, I encourage you to

check out the epic gameplay at https://www.youtube.com/watch?v=5sxMqLjTv6k (Classic

Tetris, 2020).

Figure 1. Classic Tetris game screen

When the world went online in 2020, the demand for online one-on-one gameplay peaked.

Thus, in June 2020, I had the idea of building a platform to address this demand. Classic

Tetris did not have a built-in multiplayer mode, so at the time, the most popular way to
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compete online was to have a middleman aggregate the live videos of the players’ game

screens and referee them manually. This was tedious, so I explored ways to allow players

to coordinate the games themselves and automate the refereeing process through building

nestris.online.

In a nutshell, nestris.online helps players play Classic Tetris against each other by streaming

their game videos to each other. Behind the scenes, the app would conduct real-time

analysis on the players’ game videos to automatically referee the game. Below, I reflect on

two key aspects of the app: the player-to-player video streaming and the identification

of upcoming pieces (a necessary piece of information for refereeing the game). I will focus

on the latter as it was the more interesting topic of the two.

Challenges and Constraints

Retro games are difficult to work with because of how old and low-level they are. Today,

many games are open-source and provide developer toolkits for anyone to contribute new

features. However, retro games that were built for the NES such as Classic Tetris were

written with the 6502 Assembly language, which is difficult to work with these days

(Zurawel, n.d.). Furthermore, the NES is an 8-bit console with a chip much weaker than

today’s computers’, so it wouldn’t be easy to add complex functionalities. This limits the

opportunities to modify the game itself.

Retro games also tend to involve “frame-perfect” gameplay, meaning that nearly every

video frame rendered by the game is important (North, 2020). For example, on levels 19-28

in Classic Tetris, it can take as little as 0.8 seconds for a piece to fall and lock in place. At

levels 29+, it takes half that time. This means that any game state analysis needs to analyze

the game video at a rate greater than 1 Hz so that the game state and the analysis are

synchronized as much as possible. The higher the rate, the better. Overall, for the piece

identification, the following constraints had to be met:

● Identification of upcoming piece with a very high degree of accuracy (at most 1

incorrect identification per 100 pieces)

3



● Detection of upcoming piece multiple times per second (run detection algorithm at a

rate greater than 1 Hz)

● Minimal per-game financial cost when identifying the upcoming pieces with the

above constraints (less than 1 USD per game)

On the other hand, the game video streaming did not have as many requirements. When

competing in Classic Tetris, the most important pieces of information to note from an

opponent’s screen are the opponent’s score and level, and whether the stack is close to the

top of the board. Since the above information is easily readable, I aimed to render the

current player’s and the opponent’s game videos at a frame rate greater than 30 Hz to

provide a pleasant gaming experience.

Real-time Game Video Streaming

As mentioned earlier, it was not feasible to modify the game itself to communicate with

other players. Thus, the video had to be captured and sent between players. To be able to

analyze the players’ games, I first needed to capture their device screens and exchange

either player’s video with the other player.

Until I worked on this project, I had only worked with HTTP requests. In HTTP, a client (a

player’s browser) would make a request to a server which handles the request and sends

back a response. Every HTTP request includes both data sent by the client and headers

storing additional information about the request (Gamage, 2017). With the extra overhead,

HTTP requests have high latency and are not suited for the rapid bi-directional data

transfer needed for a game being played in real time between two players (Luecke, 2018).

The frontrunner solution for low-latency data exchange between clients is to use

WebSockets (Ubl & Kitamura, 2010). Socket connections allow a client (a player’s browser)

to open and maintain a persistent connection with the server through the initial

connection, which is called a handshake (Ubl & Kitamura, 2010). Then, both the client and

the server can emit and listen for events, allowing them to execute logic without having to
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establish a new connection. The data overhead in HTTP headers does not apply to sockets,

and the latency is much lower, hence its popular use in games, messaging, and other

applications. This was critical to allowing the players to watch each other’s game screens in

real-time. I used Socket.IO to manage the socket connections on the server and PeerJS to

manage the video connections between players. Using these technologies, I was able to

stream the players’ game videos at a frame rate greater than 30 Hz, satisfying the

constraint.

Analyzing the Upcoming Piece

In Classic Tetris, one of the most important pieces of information that can be retrieved

from the game screen is the upcoming piece that will be dropped after the piece that is

currently falling (Figure 2). With this information, one can analyze game statistics and player

performance, including the player’s tetris rate (percentage of line clears used for tetrises)

and whether the player is “dead” (when the pieces pile up and reach the top of the board).

Figure 2. The “Next” box that displays the upcoming piece in Classic Tetris
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This was the most crucial step to completing the automatic refereeing system and also the

biggest challenge of the project. During initial scoping, I researched potential computer

vision (CV) libraries capable of identifying the upcoming piece from the game video. Google

Vision API was one of the most obvious choices, with its high degree of efficacy, but it had

two major issues. First, it was too slow. Analyzing an image would require uploading it first

to Google and then waiting for an API response before the results can be used. And this

would need to be done multiple times per second. Second, considering the number of

requests to the API, pricing is an issue. A Classic Tetris game between two players that lasts

10 minutes would require about 4,800 requests and cost about 7.20 USD if the game state

was analyzed 4 times per second (Google, 2021). That would be too expensive, given the

constraints.

Considering the speed constraint, it’s much faster to take advantage of a player’s browser’s

computing resources to conduct the image recognition locally, and then only send the

processed data to the server via a socket connection. This would massively reduce the

amount of data exchanged between clients and the server, and would eliminate the issue

of high latency when communicating with external APIs. It would also reduce the

computing resources needed on the server to process all the data, thereby lowering

deployment costs.

At this point, I contacted my friend, Yash, for some advice (he specializes in machine

learning and computer vision). After some insightful discussion and brainstorming, one

suggestion that he made clicked: avoiding the use of computer vision libraries entirely. I

ultimately utilized his suggestion in my solution.

Extracting the Next Piece from the Game Video

In Classic Tetris, there are 7 “tetrominoes”, also known as “pieces” that drop from the top of

the screen periodically (Figure 3).
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Figure 3. The 7 tetrominoes (“pieces”) in Classic Tetris

As mentioned earlier, these pieces are displayed in the “Next” box before they drop from

the top of the screen. The first step was to crop out the “Next” box from the game video.

Using an online pixel ruler, I measured the pixel offset and dimensions of the “Next” box

relative to the top-left corner of the game screen and stored them in a 4-dimensional

vector with format [<x-offset>, <y-offset>, <width>, <height>]:

const NEXT_PIECE_DIMS = [1247, 539, 143, 70]

Using the Canvas API, I then applied these measurements to crop out the “Next” box from

the game video (an HTML <video> element stored in videoRef.current) and “redraw” it on

an HTML <canvas> element stored in pieceRef.current (Mozilla, 2021).

const canvas = pieceRef.current.getContext('2d')

canvas.drawImage(

videoRef.current,

...NEXT_PIECE_DIMS,

0, 0, NEXT_PIECE_DIMS[2], NEXT_PIECE_DIMS[3]

)

Now, I had a consistent image of each piece in the game as rendered in the “Next” box. This

meant that all the images for I pieces, for instance, would look the same, with the same size

and dimensions so that an identification algorithm could be applied consistently (Figure 4).
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Figure 4. Cropped images of the I, O and S pieces from the “Next” box with equal dimensions

Design

The overarching idea of the piece detection algorithm in nestris.online involved strategically

selecting a couple of pixels from the “Next” box, and checking whether the pixels were

black. This data allowed the quick and accurate determination of the shape and thus the

identity of the piece.

To determine which pixels to check, I first added the cropped pictures of the pieces shown

in Figure 4 to a Google Drawing, layering those that had overlapping squares (where each

piece is composed of 4 squares). To clarify, when the S, Z, T, L and J pieces are layered, their

squares form a 2x3 grid without any partial overlaps (Figure 5).

Figure 5. The squares that make up the S, Z, T, L and J pieces line up in a 2x3 grid (highlighted in green)

If we only consider these five pieces and the ten pixels marked by red dots in Figure 6

below, the combination of which pixels are non-black is sufficient for identifying the piece

in the image.
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Figure 6. The 10 pixels (red dots) used to identify the “Next” piece. Top left corner: the combination of pixels that must
be non-black to distinguish each piece.

For a simple example, let’s pretend that the game only contains the S, Z, T, L and J pieces

and only examine pixels 2-7 in our analysis. Consider the following pixel configuration:

Pixel index 2 3 4 5 6 7

Black? Yes No No No No Yes

Table 1. Example pixel configuration for an unknown piece

Since pixel 4 is not black, the piece cannot be a Z (which has non-black pixels 2,3,6,7).

Subsequently, since pixel 6 is non-black, the piece cannot be an L or J. Thus, the piece can

only be an S or a T, and the fact that pixel 5 is non-black narrows it down to an S.

The I piece is pretty straightforward - if pixels 0 and 1 in the image are non-black, then we

can conclude that it is an I piece as no other piece is that wide. And for the O piece, we

ensure that pixels 2 and 4 are black and pixels 8 and 9 are non-black. There are other

possible configurations for detecting an O piece, but this one worked fine.
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With this algorithm, it was possible to determine the next piece quickly based on the

colours of the 10 pixels and some conditional logic, which was much faster and less

resource-intensive than using computer vision libraries that utilize machine learning.

Implementation

Using the blueprint in Figure 6 and an online pixel ruler, I pinpointed the pixel coordinates

of the 10 pixels relative to the top-left corner of the cropped pieces and stored them as

2-dimensional [<x-offset>, <y-offset>] vectors in a JavaScript object mapping the pixel

indices to their coordinates. Note that no height or width values were needed because only

singular pixels (1x1) were analyzed.

const PIECE_DATA = {

0: [11, 33],

1: [119, 33],

2: [28, 9],

3: [71, 9],

4: [117, 9],

5: [28, 52],

6: [71, 52],

7: [117, 52],

8: [40, 61],

9: [100, 61]

}

For each pixel analyzed, I used the Canvas API to extract the RGB values of the pixel’s

colour. The following function hasColour returns true if the pixel is non-black and false

otherwise.

const hasColour = (r, g, b) => {

return (

r !== 0

|| g !== 0

|| b !== 0

)

}
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Finally, I used conditional logic to determine the next piece from the pixel configuration.

The input was a 10-dimensional boolean vector, with p0 being true if pixel 0 was non-black,

p1 being true if pixel 1 was non-black, and so on. The output was the identified piece.

const analyzePixels = ([p0, p1, p2, p3, p4, p5, p6, p7, p8, p9]) => {

if (p0 && p1) { // Exclusive to I

return 'I'

} else if (p2 && p3 && p4) { // Narrow down to J, L, T

if (p5) {

return 'L'

} else if (p6) {

return 'T'

} else if (p7) {

return 'J'

}

} else if (p8 && p9) {

return 'O'

} else if (p2 && p3) {

return 'Z'

} else if (p3 && p4) {

return 'S'

}

return 'Invalid piece'

}

You’ve probably noticed that some pixels don’t actually need to be analyzed. For example,

pixel 3 is non-black in the S, Z, T, L and J pieces, and it is not a factor in distinguishing

between I and O. However, upon testing the function without considering pixel 3, the

algorithm’s accuracy decreased, particularly when it would detect Z and S pieces as O

pieces. This was likely due to small discrepancies in pixel colours - some black pixels may

have been rendered as off-black. It took some tweaking and testing to arrive at the

conditional logic in the function above.

The last step was to run the image cropping and analysis functions on the game video at a

rate of 4 times per second. The following is a condensed version of the code for better

readability:

const getNextPiece = () => {
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// Crop next piece from game video

const canvas = pieceRef.current.getContext('2d')

canvas.drawImage(

videoRef.current,

...NEXT_PIECE_DIMS,

0, 0, NEXT_PIECE_DIMS[2], NEXT_PIECE_DIMS[3]

)

// Analyze 10 pixels

const pixelData = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].map(pixel => {

// Get pixel data

const info = canvas.getImageData(

...PIECE_DATA[pixel], 1, 1

)

return hasColour(...info.data) // info.data is of the form [r,g,b]

})

const nextPieceString = analyzePixels(pixelData)

setNextPiece(nextPieceString)

}

// Run the analysis code 4 times per second (every 250ms)

setInterval(getNextPiece, 250)

With this algorithm, I was able to correctly identify the upcoming piece at 4 times per

second with a 99% success rate and zero financial cost per game. The implementation

satisfied the original constraints of this engineering problem: a cheap, yet accurate

algorithm to detect the upcoming Tetris piece at a rate greater than 1 Hz.

Potential Improvements

While the piece identification algorithm satisfied the original requirements, there is room

for improving the project to further increase its frequency or reduce its resource

consumption. Two methods include using bit arrays and using WebAssembly.

Bit Arrays

In my current implementation, I use a 10-dimensional vector of booleans to represent the

configuration of black and non-black pixels in the “Next” box. When executing the
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conditional logic for piece detection, several nested if conditions are run. While these

conditions are usually so low-level that their optimization doesn’t make a noticeable

difference, they could impact the piece detection algorithm, which needs to run at a high

frequency. Moreover, the faster this algorithm can be made, the higher the frequency it can

be run at, and the closer the analysis is synchronized with the game.

Since the 10-D vector is just a sequence of true/false values, each pixel’s black/non-black

state could be represented as a bit in an integer. Then, instead of using several AND

operations and nested conditions to check the various conditions, a mask can be applied

to check the state of multiple bits (pixels) simultaneously. This may boost the performance

of the piece detection function, but it would require some extensive testing to verify.

WebAssembly

A couple of weeks ago, I watched a YouTube video about WebAssembly (WASM), a relatively

new technology that serves as a compilation target for code on the web (Fireship, 2020).

WASM features many performance benefits compared to plain JavaScript, including being

more compact, optimized and compatible with machine code (Clark, 2017). These features

can drastically boost an app’s performance on the web, hence why it powers some very

well-known web technologies such as Figma and Tesseract.js.

By compiling the piece detection algorithm to WASM, it is possible to further increase its

speed. This also opens the door to increasing the algorithm’s accuracy by analyzing the

entire squares that make up the pieces rather than individual pixels, accounting for

potential discrepancies in the pixel colours. Best of all, WASM is backward-compatible with

existing web technologies, making it a prime candidate for adding features and

improvements that would normally be too resource-intensive.

Conclusion

Through the thorough analysis and evaluation of various approaches to solve the

challenges of building nestris.online, I implemented socket connections and my

13



self-designed pixel analysis algorithm as the ideal solutions to allow players to watch their

opponent’s screens and to determine the upcoming piece for each player. These features

were critical to the functionality of the project.

The decision to use socket connections over HTTP requests allowed quickly exchanging the

players’ game video data via the server. With the lack of data overhead and the consistent

server-client connections, the data transfer speed using sockets was fast enough to fulfill

the requirement of the game video frame rate being at least 30 Hz.

Analyzing the upcoming pieces was the most interesting challenge of this project, as it

required thinking outside the realm of popular image recognition libraries. The pixel

analysis algorithm that I designed and implemented satisfied the requirements of being

accurate, fast and cheap. Through blueprinting the pieces and implementing some simple

conditional logic, the algorithm ran with zero financial costs, and was 99% accurate at a

rate of 4 Hz. This satisfied all three constraints defined in the project.

Overall, the engineering decisions satisfied the design constraints and achieved high

execution frequencies to conduct real-time data transfer and analysis on a “frame-perfect”

retro game (North, 2020). With Classic Tetris as a game being unlikely to change anytime in

the next couple of years, the ideas presented in this blog post should remain viable going

into the near future.

In addition, building the piece detection algorithm has further motivated me to create

game analysis tools for competitive Classic Tetris players. In 2021, Classic Tetris’

competitive scene is pushing players to improve and innovate more than ever, and

providing quality analytics has the serious potential to transform the playing field.
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